
www.manaraa.com

International Journal of Engineering & Technology (iJET), ISSN: 2049-3444, Vol. 2, No. 5, 2012
http://iet-journals.org/archive/2012/may_vol_2_no_5/255895133318216.pdf

A Simulation Model for the Waterfall

Software Development Life Cycle

Youssef Bassil

LACSC – Lebanese Association for Computational Sciences

Registered under No. 957, 2011, Beirut, Lebanon

youssef.bassil@lacsc.org

ABSTRACT

Software development life cycle or SDLC for short is a methodology for designing, building, and maintaining information and

industrial systems. So far, there exist many SDLC models, one of which is the Waterfall model which comprises five phases to

be completed sequentially in order to develop a software solution. However, SDLC of software systems has always encountered

problems and limitations that resulted in significant budget overruns, late or suspended deliveries, and dissatisfied clients. The

major reason for these deficiencies is that project directors are not wisely assigning the required number of workers and

resources on the various activities of the SDLC. Consequently, some SDLC phases with insufficient resources may be delayed;

while, others with excess resources may be idled, leading to a bottleneck between the arrival and delivery of projects and to a

failure in delivering an operational product on time and within budget. This paper proposes a simulation model for the Waterfall

development process using the Simphony.NET simulation tool whose role is to assist project managers in determining how to

achieve the maximum productivity with the minimum number of expenses, workers, and hours. It helps maximizing the

utilization of development processes by keeping all employees and resources busy all the time to keep pace with the arrival of

projects and to decrease waste and idle time. As future work, other SDLC models such as spiral and incremental are to be

simulated, giving project executives the choice to use a diversity of software development methodologies.

Keywords: Software Engineering, SDLC, Waterfall Model, Computer Simulation, Simphony.NET

1. INTRODUCTION

The process of building computer software and information

systems has been always dictated by different development

methodologies. A software development methodology

refers to the framework that is used to plan, manage, and

control the process of developing an information system

[1]. Formally, a software development methodology is

known as SDLC short for Software Development Life

Cycle and is majorly used in several engineering and

industrial fields such as systems engineering, software

engineering, mechanical engineering, computer science,

computational sciences, and applied engineering [2]. In

effect, SDLC has been studied and investigated by many

researchers and practitioners all over the world, and

numerous models have been proposed, each with its own

acknowledged strengths and weaknesses. The Waterfall,

spiral, incremental, rational unified process (RUP), rapid

application development (RAD), agile software

development, and rapid prototyping are few to mention as

successful SDLC models. In a way or another, all SDLC

models suggested so far share basic properties. They all

consist of a sequence of phases or steps that must be

followed and completed by system designers and

developers in order to attain some results and deliver a

final product. For instance, the Waterfall model, one of the

earliest SDLC models, comprises five consecutive phases

and they are respectively: Business analysis, design,

implementation, testing, and maintenance. On the other

hand, the incremental model has seven phases and they are

respectively: Planning, requirements, analysis,

implementation, deployment, testing, and evaluation [3].

Due to the success of the Waterfall model, many software

development firms and industrial manufacturers have

adopted it as their prime development framework and

SDLC to plan, build, and maintain their products [4].

Additionally, these firms went to the extreme by

establishing several departments each of which is run by a

team of expert people totally responsible for and dedicated

to handle a particular phase of the Waterfall model. This

includes, for instance, business and requirements analysis

department, software engineering department, development

and programming department, quality assurance (QA)

department, and technical support department.

However, assigning the exact and the appropriate number

of resources for each phase of the Waterfall model

including people, equipment, processes, time, effort, and

budget was a dilemma and confusion for project managers

and directors to achieve the maximum productivity with

the minimum number of expenses, workers, and hours. In

that sense, it is vital to find the optimal number of

resources that should be assigned in order to complete a

specific task or phase. For instance, project managers need

to find out the number of system analysts that should be

hired to work on the business analysis phase. They also

need to know how many computers are required for the

implementation phase, and how many testers should be

acquired to cover all possible test cases during the testing

phase. In order to answer all these questions, a simulation

for the SDLC is needed so as to estimate the appropriate

number of resources necessary to fulfill a certain project of

a certain scale.

Relatedly, a computer simulation is a computer program

that tries to simulate an abstract model of a particular

system. In practice, simulations can be employed to

discover the behavior, to estimate the outcome, and to

analyze the operation of systems [5].

www.manaraa.com

International Journal of Engineering & Technology (iJET), ISSN: 2049-3444, Vol. 2, No. 5, 2012
http://iet-journals.org/archive/2012/may_vol_2_no_5/255895133318216.pdf

This paper proposes a simulation model to simulate and

mimic the Waterfall SDLC development process from the

analysis to the maintenance phase using the

Simphony.NET computer simulation tool. The model

simulates the different stakeholders involved in the

Waterfall model which are essential throughout the whole

development process. They include the software solution to

design and develop; the employees such as designers and

programmers; the different Waterfall phases; and the

workflow of every Waterfall task. Furthermore, the

proposed simulation takes into consideration three different

types of software solutions based on their complexity and

scale. The simulation also measures the rate of projects

arrival, the rate of projects delivery, and the utilization of

various resources during every phase and task.

The goal of the proposed simulation is to identify the

optimal number of resources needed to keep the company

up with the continuous flow of incoming projects using the

minimal amount of workers, time, and budget.

2. THE WATERFALL SDLC MODEL

The Waterfall SDLC model is a sequential software

development process in which progress is regarded as

flowing increasingly downwards (similar to a waterfall)

through a list of phases that must be executed in order to

successfully build a computer software. Originally, the

Waterfall model was proposed by Winston W. Royce in

1970 to describe a possible software engineering practice

[6]. The Waterfall model defines several consecutive

phases that must be completed one after the other and

moving to the next phase only when its preceding phase is

completely done. For this reason, the Waterfall model is

recursive in that each phase can be endlessly repeated until

it is perfected. Fig. 1 depicts the different phases of the

SDLC Waterfall model.

Fig. 1 The Waterfall model

Essentially, the Waterfall model comprises five phases:

Analysis, design, implementation, testing, and

maintenance.

Analysis Phase: Often known as Software Requirements

Specification (SRS) is a complete and comprehensive

description of the behavior of the software to be developed.

It implicates system and business analysts to define both

functional and non-functional requirements. Usually,

functional requirements are defined by means of use cases

which describe the users’ interactions with the software.

They include such requirements as purpose, scope,

perspective, functions, software attributes, user

characteristics, functionalities specifications, interface

requirements, and database requirements. In contrast, the

non-functional requirements refer to the various criteria,

constraints, limitations, and requirements imposed on the

design and operation of the software rather than on

particular behaviors. It includes such properties as

reliability, scalability, testability, availability,

maintainability, performance, and quality standards.

Design Phase: It is the process of planning and problem

solving for a software solution. It implicates software

developers and designers to define the plan for a solution

which includes algorithm design, software architecture

design, database conceptual schema and logical diagram

design, concept design, graphical user interface design, and

data structure definition.

Implementation Phase: It refers to the realization of

business requirements and design specifications into a

concrete executable program, database, website, or

software component through programming and

deployment. This phase is where the real code is written

and compiled into an operational application, and where

the database and text files are created. In other words, it is

the process of converting the whole requirements and

blueprints into a production environment.

Testing Phase: It is also known as verification and

validation which is a process for checking that a software

solution meets the original requirements and specifications

and that it accomplishes its intended purpose. In fact,

verification is the process of evaluating software to

determine whether the products of a given development

phase satisfy the conditions imposed at the start of that

phase; while, validation is the process of evaluating

software during or at the end of the development process to

determine whether it satisfies specified requirements [7].

Moreover, the testing phase is the outlet to perform

debugging in which bugs and system glitches are found,

corrected, and refined accordingly.

Maintenance Phase: It is the process of modifying a

software solution after delivery and deployment to refine

output, correct errors, and improve performance and

quality. Additional maintenance activities can be

performed in this phase including adapting software to its

environment, accommodating new user requirements, and

increasing software reliability [8].

3. RELATED WORK

 [9] proposed a simulation planning that must be completed

prior to starting any development process. Its purpose is to

identify the structure of the project development plan and

to classify what must be simulated, the degree of

simulation, and how to use the simulation results for future

planning. Moreover, the approach takes into consideration

such issues as configuration requirements, design

constraints, development criteria, problem reporting and

resolution, and analysis of input and output data sets. [10]

described three types of simulation methodologies. The

first is called “simulation as software engineering” and

revolves around simulating the delivery of a product. This

comprises the use of large simulation models to represent a

real system at the production environment. The second is

called “simulation as a process of organizational change”

and revolves around the delivery of a service. This

comprises the use of temporary small-scale models to

http://en.wikipedia.org/wiki/Software_testability
http://en.wikipedia.org/wiki/Quality_(business)

www.manaraa.com

International Journal of Engineering & Technology (iJET), ISSN: 2049-3444, Vol. 2, No. 5, 2012
http://iet-journals.org/archive/2012/may_vol_2_no_5/255895133318216.pdf

simulate small-scale tasks and processes. The third is called

“simulation as facilitation” and revolves around

understanding and debating about a problem situation. This

comprises using “quick-and-dirty” very small-scale models

to simulate minute-by-minute processes. [11] proposed the

use of simulation as facilitation based on system dynamics.

The model proposes the simulation of three development

stages: The conceptualization stage which simulates

problem situation and system objectives; the development

stage which simulates the coding, verification, validation,

and calibration processes; and the facilitation stage which

simulates group learning around the model, project

findings, and project recommendations. [12] proposed a

guideline to be followed for performing a simulation study

for software development life cycles. It is composed of ten

processes, ten phases, and thirteen reliability evaluation

stages. Its purpose is to assess the credibility of every stage

after simulation and match it with the initial requirements

and specifications. The model provides one of the most

documented descriptions for simulating life-cycles in the

software engineering field [13]. [14] proposed a software

engineering process simulation model called SEPS for the

dynamic simulation of software development life cycles. It

is based on using feedback principles of system dynamics

to simulate communications and interactions among the

different SDLC phases and activities from a dynamic

systems perspective. Basically, SEPS is a planning tool

meant to improve the decision-making of managers in

controlling the projects outcome in terms of cost, time, and

functionalities. [15] proposed a discrete open source event

simulation model for simulating the programming and the

testing stages of a software development process using

MathLab. The model investigates the results of adopting

different tactics for coding and testing a new software

system. It is oriented toward pair programming in which a

programmer writes the code and the simulation acts as an

observer which reviews the code and return feedback to the

original programmer. In effect, this approach automates the

testing and the reviewing processes and promotes best

programming practices to deliver the most reliable and

accurate code. [16] proposed an intelligent computerized

tool for simulating the different phases of a generic SDLC.

It is intended to help managers and project directors in

better planning, managing, and controlling the

development process of medium-scale software projects.

The model is based on system dynamics to simulate the

dynamic interaction between the different phases of the

development process taking into consideration the

existence of imprecise parameters that are treated as fuzzy-

logic variables.

4. PROBLEM DEFINITION &

MOTIVATIONS

In practice, software development projects have regularly

encountered problems and shortcomings that resulted in

noteworthy delays and cost overruns, as well as occasional

total failures [17]. In effect, the software development life

cycle of software systems has been plagued by budget

overrun, late or postponed deliveries, and disappointed

customers [18]. A deep investigation about this issue was

conducted by the Standish Group [19], it showed that many

projects do not deliver on-time, do not deliver on budget,

and do not deliver as expected or required. The major

reason for this is that project managers are not intelligently

assigning the required number of employees and resources

on the various activities of the SDLC. For this reason,

some SDLC phases may be delayed due to the insufficient

number of workers; while, other dependent phases may

stay idle, doing nothing, but waiting for other phases to get

completed. Consequently, this produces a bottleneck

between the arrival and delivery of projects which leads to

a failure in delivering a functional product on time, within

budget, and to an agreed level of quality.

The proposed simulation for the Waterfall model is aimed

at finding the trade-offs of cost, schedule, and functionality

for the benefit of the project outcome. It helps maximizing

the utilization of development processes by keeping all

employees and resources busy all the time to keep pace

with the incoming projects and reduce waste and idle time.

As a result, the optimal productivity is reached with the

least possible number of employees and resources,

delivering projects within the right schedule, budget, and

conforming to the initial business needs and requirements.

5. THE SIMULATION MODEL

This paper proposes a simulation model to simulate the

different phases of the Waterfall SDLC model including all

related resources, input, workflow, and output. The

simulation process is carried out using a simulation tool

called Simphony.NET [20] which provides an adequate

environment to create, manage, and control the different

simulation entities. The purpose of this simulation is to

guarantee that the interval-time between each project

arrival is equal to the interval-time between each project

production. In other words, if a new project is emerging

every 10 days, a project must be delivered every other 10

days, taking into consideration that the optimal number of

employees should be assigned to every project, that is the

number of idle and busy resources should be kept as

minimum as possible.

Generally speaking, the proposed simulation process

consists of the following steps:

1. Run the simulation, examine the data produced by

the simulation,

2. Find changes to be made to the model based on the

analysis of data produced by the simulation,

3. Repeat as much as it takes to reach the optimal

results.

Technically speaking, the simulation process of the

Waterfall model consists of the following steps:

1. Divide the Waterfall model into independent phases,

2. Understand the concept and the requirements that lie

behind every phase,

3. Define the resources, tasks, entities, and the work

flow of every phase,

4. Simulate each phase apart and record results,

5. Integrate the whole phases together, simulate the

system, and record results.

5.1. Assumptions and Specifications

Prior to simulating the Waterfall model, a number of

assumptions and specifications must be clearly made.

Basically, projects arrive randomly at a software firm with

inter-arrival time from a Triangular distribution with a

www.manaraa.com

International Journal of Engineering & Technology (iJET), ISSN: 2049-3444, Vol. 2, No. 5, 2012
http://iet-journals.org/archive/2012/may_vol_2_no_5/255895133318216.pdf

lower limit of 30 days, an upper limit of 40 days, and a

mode of 35 days. The probability density function is then

given as:

Projects can be divided into three groups based on their

complexity and scale: 70% of the projects are small-scale

projects, 25% are medium-scale projects, and 5% are large-

scale projects.

Each project will require a different mix of specialists,

employees, and resources to be delivered based on the

scale of the project:

 Small-scale projects require 1 business analyst, 1

designer, 2 programmers, 2 testers, and 1

maintenance man.

 Medium-scale projects require 2 business analyst,

2 designer, 4 programmers, 6 testers, and 2

maintenance man.

 Large-scale projects require 5 business analyst, 5

designer, 10 programmers, 20 testers, and 5

maintenance man.

Assuming that the resources available at the software firm

are the following:

 5 Business Analyst

 5 Designers

 10 Programmers

 20 Testers

 5 Maintenance Men

And assuming that there exist the following tasks:

 Business Analysis

 Design

 Implementation

 Testing

 Maintenance

And assuming that the duration for every phase to be

completed is defined as follows:

The business analysis phase requires a Uniform distribution

with a lower limit of 3 days and an upper limit of 5 days.

The design phase requires a Uniform distribution with a

lower limit of 5 days and an upper limit of 10 days.

The implementation phase requires a Uniform distribution

with a lower limit of 15 days and an upper limit of 20 days.

The testing phase requires a Uniform distribution with a

lower limit of 5 days and an upper limit of 10 days.

The maintenance phase requires a Uniform distribution

with a lower limit of 1 day and an upper limit of 3 days.

And assuming that each phase upon completion is subject

to the following errors:

 There is a 10% probability that a small-scale

project will have an error

 There is a 20% probability that a medium-scale

project will have an error

 There is a 30% probability that a large-scale

project will have an error

5.2. The Simphony Model

The proposed simulation model is built using the

Simphony.NET simulation tool [20]. In fact,

Simphony.NET consists of a working environment and a

foundation library that allow the development of new

simulation scenarios in an easy and efficient manner. A

project in Simphony.NET is made out of a collection of

modeling elements linked to each other by logical

relationships.

Essentially, the proposed model consists of a set of

resource, queue, task, probability branch, capture, release,

and counter modeling elements. The resources are the basic

employees and workers assigned to work on the phases of

the Waterfall model. Each resource has a FIFO queue

which accumulates and stores processing events to be

processed later. Fig. 2 depicts the resource modeling

elements along with their counts and queues. They are

respectively the business analyst, the designer, the

programmer, the tester, and the maintenance man.

Fig. 2 Resource modeling elements

On the other hand, the Waterfall phases are modeled as a

set of task modeling elements each with a capture and

release elements. The capture element binds a particular

resource to a particular task and the release element

releases the resource from the task when it is completed.

Additionally, several probability branch elements exist

between the different tasks of the model whose purpose is

www.manaraa.com

International Journal of Engineering & Technology (iJET), ISSN: 2049-3444, Vol. 2, No. 5, 2012
http://iet-journals.org/archive/2012/may_vol_2_no_5/255895133318216.pdf

to simulate the error probability that a Waterfall task might

exhibit after completion. The probability element has two

branches: Branch 1 with Prob=0.1 denotes that 10% of the

small-scale projects are subject to errors; and branch 2 with

Prob=0.9 denotes that 90% of the small-scale projects will

not exhibit errors after the completion of every phase.

These branches simulate the recursive property of the

waterfall model to loop over the preceding task if an error

was found in the current task.

Moreover, another probability branch element exists at the

beginning of every project development cycle whose

purpose is to simulate the scale of projects under

development. It actually has three branches: Branch 1 with

Prob=0.7 denotes that 70% of the incoming projects are

small-scale; branch 2 with Prob=0.25 denotes that 25% of

the incoming projects are medium-scale; and branch 3 with

Prob=0.05 denotes that 5% of the incoming projects are

large-scale.

The model starts with a new entity element which sets the

number of incoming projects and a counter that counts the

number of projects being received, and ends with another

counter that counts the number of projects being delivered.

Fig. 3 shows the simulation model for the different phases

of the Waterfall development process without going deeply

into modeling every type of projects. However, Fig. 4

shows the different modeling elements for simulating

small-scale type projects.

Fig. 3 Simulation model for the Waterfall SDLC

 Fig. 4 Simulation model for small-scale type projects

5.3. Running the Simulation

The simulation model was executed 5 times, for 1500

milliseconds (2.5 minutes) with 50 incoming projects using

the Simphony.NET environment. Table 1 delineates the

obtained statistics including the number of projects

received and delivered, in addition to the ArT mean time.

Table 2 delineates the average utilization of every resource

after the completion of the simulation. Furthermore, a

graphical representation for resource utilization is plotted

in Fig. 5 for the programmer resource; while, Fig. 6 is for

the designer resource.
TABLE I

STATISTICS OBTAINED FOR SIMULATING THE WATERFALL MODEL

small-scale projects received ArT Mean

35 52.09

medium-scale projects received ArT Mean

10 130.45

large-scale projects received ArT Mean

5 426.29

Total number of projects received: 50

Average ArT Mean: 34.46

small-scale projects delivered ArT Mean

35 53.37

medium-scale projects delivered ArT Mean

10 134.84

large-scale projects delivered ArT Mean

5 448.23

www.manaraa.com

International Journal of Engineering & Technology (iJET), ISSN: 2049-3444, Vol. 2, No. 5, 2012
http://iet-journals.org/archive/2012/may_vol_2_no_5/255895133318216.pdf

Total number of projects delivered: 50

Average ArT Mean: 35.55

TABLE II

SIMULATED RESOURCES WITH THEIR AVERAGE UTILIZATION

Resource
Average

Utilization

Business Analysts 5.2

Designers 11.6

Programmers 21.02

Testers 7.4

Maintenance Men 2.09

Fig. 5 Utilization of the programmer resource

Fig. 6 Utilization of the designer resource

5.4. Results Interpretation

The results obtained after running the simulation for many

times using the Simphony.NET simulator, clearly showed

that the system reached the optimal state when the total

number of projects received was equal to the total number

of project delivered. In fact, 50 projects were delivered out

of 50 without any loss in time or schedule. Additionally,

the results helped in pin pointing the optimal number of

resources needed to handle the different phases of the

waterfall model. The optimal number of required analysts

is 5.2, the optimal number of required designers is 11.6, the

optimal number of required programmers is 21.02, the

optimal number of required testers is 7.4, and the optimal

number of required maintenance men is 2.09. These

numbers of resources are considered to be the necessary

number of workers needed to keep the company up with

the continuous flow of incoming projects, in this particular

case, dispatching and producing exactly 50 projects on time

and within budget.

6. CONCLUSIONS & FUTURE WORK

This paper proposed a simulation model for simulating the

Waterfall software development life cycle using the

Simphony.NET simulator tool. It consists of simulating all

entities of the Waterfall model including, software

solutions to be developed, operational resources,

employees, tasks, and phases. Its aim was to assist project

managers in determining the optimal number of resources

required to produce a particular project within the allotted

schedule and budget. Experiments showed that the

proposed model proved to be accurate as it accurately

calculated the number of optimal resources required to

accomplish a particular software solution based on their

utilization metric.

As future work, other SDLC models such as spiral and

incremental are to be simulated, allowing project managers

to select among a diversity of software development

methodologies to support their decision-making and

planning needs.

ACKNOWLEDGMENT

This research was funded by the Lebanese Association for

Computational Sciences (LACSC), Beirut, Lebanon, under

the “Simulation & Testing Research Project – STRP2012”.

REFERENCES

[1] Ian Sommerville, Software Engineering, Addison

Wesley, 9th ed., 2010.

[2] Richard H. Thayer, and Barry W. Boehm, “software

engineering project management”, Computer Society

Press of the IEEE, pp.130, 1986.

[3] Craig Larman and Victor Basili, “Iterative and

Incremental Development: A Brief History”, IEEE

Computer, 2003.

[4] N. Munassar and A. Govardhan, “A Comparison

Between Five Models Of Software Engineering”,

IJCSI International Journal of Computer Science

Issues, vol. 7, no. 5, 2010.

[5] P. Humphreys, Extending Ourselves: Computational

Science, Empiricism, and Scientific Method, Oxford

University Press, 2004.

[6] Royce, W., “Managing the Development of Large

Software Systems”, Proceedings of IEEE WESCON

26, pp.1-9, 1970.

[7] IEEE-STD-610, A Compilation of IEEE Standard

Computer Glossaries, IEEE Standard Computer

Dictionary, 1991.

[8] Andrew Stellman, Jennifer Greene, Applied Software

Project Management, O'Reilly Media, 2005.

[9] Jim Ledin, “Simulation Planning” PE, Ledin

Engineering, 2000.

[10] Robinson, S., “Modes of simulation practice:

approaches to business and military simulation”,

Proceedings in Simulation Modeling Practice and

Theory, vol. 10, pp. 513-523 , 2002.

http://doi.ieeecomputersociety.org/10.1109/MC.2003.1204375
http://doi.ieeecomputersociety.org/10.1109/MC.2003.1204375
http://en.wikipedia.org/wiki/Oxford_University_Press
http://en.wikipedia.org/wiki/Oxford_University_Press
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

www.manaraa.com

International Journal of Engineering & Technology (iJET), ISSN: 2049-3444, Vol. 2, No. 5, 2012
http://iet-journals.org/archive/2012/may_vol_2_no_5/255895133318216.pdf

[11] Robinson, S., “Soft with a hard centre: discrete-event

simulation in facilitation”, Journal of the Operational

Research Society, vol. 52, pp. 905-915 , 2001.

[12] Balci, O., “Guidelines for successful simulation

studies”, Proceedings of the Simulation Conference,

pp. 25-32, New Orleans, LA, 1990.

[13] R. Sargent, R. Nance, C. Overstreet, S. Robinson, and

J. Talbot, “The simulation project life-cycle: models

and realities”, Proceedings of the Winter Simulation

Conference, 2006.

[14] Chi Y Lin, Tarek Abdel-Hamid, and Joseph S Sherif,

“Software-Engineering Process Simulation model

(SEPS)”, Journal of Systems and Software, Vol. 38,

no. 3, pp. 263-277, 1997.

[15] Shmuel Ur, Elad Yom-Tov and Paul Wernick, An

Open Source Simulation Model of Software

Development and Testing, Hardware and Software,

Verification and Testing, Lecture Notes in Computer

Science, Springer, vol. 4383, pp. 124-137, 2007.

[16] Reuven R. Levary, Chi Y. Lin, “Modeling the

Software Development Process Using an Expert

Simulation System Having Fuzzy Logic”, Journal of

Software, Practice and Experience, vol. 21, no. 2,

pp.133-148, 1991.

[17] B. Boehm and K.J. Sullivan, “Software Economics:

Status and Prospects,” Special Millenium Issue,

Information and Software Technology, 2000.

[18] Leung, H., and Fan, Z., Software Cost Estimation.

Handbook of Software Engineering, Hong Kong

Polytechnic University 2002.

[19] Extreme Chaos (2001), Standish Group, [Online].

Available: http://standishgroup.com/sample_research

/extreme_chaos.pdf

[20] Simphony.NET (2005), University of Alberta,

[Online]. Available:

http://irc.construction.ualberta.ca/html/research/softw

are/simphony.net.html

http://www.springerlink.com/content/?Author=Shmuel+Ur
http://www.springerlink.com/content/?Author=Elad+Yom-Tov
http://www.springerlink.com/content/?Author=Paul+Wernick
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/

